4,545 research outputs found

    Spin-Hall Conductivity in Electron-Phonon Coupled Systems

    Full text link
    We derive the ac spin-Hall conductivity σsH(ω)\sigma_{\rm sH}(\omega) of two-dimensional spin-orbit coupled systems interacting with dispersionless phonons of frequency ω0\omega_0. For the linear Rashba model we show that the electron-phonon contribution to the spin-vertex corrections breaks the universality of σsH(ω)\sigma_{\rm sH}(\omega) at low-frequencies and provides a non-trivial renormalization of the interband resonance. On the contrary, in a generalized Rashba model for which the spin-vertex contributions are absent, the coupling to the phonons enters only through the self-energy, leaving the low frequency behavior of σsH(ω)\sigma_{\rm sH}(\omega) unaffected by the electron-phonon interaction.Comment: 4 pages, 3 figures, version as printe

    Electron-phonon effects on spin-orbit split bands of two dimensional systems

    Full text link
    The electronic self-energy is studied for a two dimensional electron gas coupled to a spin-orbit Rashba field and interacting with dispersionless phonons. For the case of a momentum independent electron-phonon coupling (Holstein model) we solve numerically the self-consistent non-crossing approximation for the self-energy and calculate the electron mass enhancement m/mm^*/m and the spectral properties. We find that, even for nominal weak electron-phonon interaction, for strong spin-orbit couplings the electrons behave as effectively strongly coupled to the phonons. We interpret this result by a topological change of the Fermi surface occurring at sufficiently strong spin-orbit coupling, which induces a square-root divergence in the electronic density of states at low energies. We provide results for m/mm^*/m and for the density of states of the interacting electrons for several values of the electron filling and of the spin-orbit interaction.Comment: 9 pages, 6 figures. Version as printe

    Evidence of a new low field cross-over in the vortex critical velocity of type-II superconducting thin films

    Full text link
    We measure current-voltage characteristics as function of magnetic field and temperature in Nb strips of different thickness and width. The instability voltage of the flux flow state related to the vortex critical velocity v* is studied and compared with the Larkin-Ovchinnikov theory. Beside the usual power-law dependence v* ~ B^-1/2, in the low field range a new cross-over field, Bcr1, is observed below which v* decreases by further lowering the external magnetic field B. We ascribe this unexpected cross-over to vortex channeling due to a fan-like penetration of the applied magnetic field as confirmed by magneto-optic imaging. The observation of Bcr1 becomes a direct evidence of a general feature in type-II superconducting films at low fields, that is a channel-like vortex motion induced by the inhomogeneous magnetic state caused by the relatively strong pinning

    Pauli susceptibility of nonadiabatic Fermi liquids

    Full text link
    The nonadiabatic regime of the electron-phonon interaction leads to behaviors of some physical measurable quantities qualitatively different from those expected from the Migdal-Eliashberg theory. Here we identify in the Pauli paramagnetic susceptibility χ\chi one of such quantities and show that the nonadiabatic corrections reduce χ\chi with respect to its adiabatic limit. We show also that the nonadiabatic regime induces an isotope dependence of χ\chi, which in principle could be measured.Comment: 7 pages, 3 figures, euromacr.tex, europhys.sty. Replaced with accepted version (Europhysics Letters

    Per un pugno di opere

    Get PDF
    La svolta decisa dal governo per le infrastrutture medie e piccole dovrebbe essere adottata anche per quelle grandi, abbandonando così l’idea che le opere “strategiche” generino una forte domanda. Altrimenti, dovremo rassegnarci ai cantieri “stop and go”. E al moltiplicarsi dei costi

    Multivariate linear parametric models applied to daily rainfall time series

    Get PDF
    International audienceThe aim of this paper is to test the Multivariate Linear Parametric Models applied to daily rainfall series. These simple models allow to generate synthetic series preserving both the time correlation (autocorrelation) and the space correlation (crosscorrelation). To have synthetic daily series, in such a way realistic and usable, it is necessary the application of a corrective procedure, removing negative values and enforcing the no-rain probability. The following study compares some linear models each other and points out the roles of autoregressive (AR) and moving average (MA) components as well as parameter orders and mixed parameters

    Tav e grandi opere: non è solo un problema di costi

    Get PDF
    Le grandi opere non solo costano tanto, ma sono spesso inutili. Per giustificarle ci si affida a previsioni di aumento del traffico poco realistiche. Sono necessarie analisi costi-benefici terze, indipendenti e interamente riproducibili

    Topological Change of the Fermi Surface in Low Density Rashba Gases: Application to Superconductivity

    Full text link
    Strong spin-orbit coupling can have a profound effect on the electronic structure in a metal or semiconductor, particularly for low electron concentrations. We show how, for small values of the Fermi energy compared to the spin-orbit splitting of Rashba type, a topological change of the Fermi surface leads to an effective reduction of the dimensionality in the electronic density of states. We investigate its consequences on the onset of the superconducting instability. We show, by solving the Eliashberg equations for the critical temperature as a function of spin-orbit coupling and electron density, that the superconducting critical temperature is significantly tuned in this regime by the spin-orbit coupling. We suggest that materials with strong spin-orbit coupling are good candidates for enhanced superconductivity.Comment: 5 pages, 2 figures ep

    Nonadiabatic Pauli susceptibility in fullerene compounds

    Full text link
    Pauli paramagnetic susceptibility χ\chi is unaffected by the electron-phonon interaction in the Migdal-Eliashberg context. Fullerene compounds however do not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic effects are expected to be relevant in these materials. In this paper we investigate the Pauli spin susceptibility in nonadiabatic regime by following a conserving approach based on Ward's identity. We find that a sizable renormalization of χ\chi due to electron-phonon coupling appears when nonadiabatic effects are taken into account. The intrinsic dependence of χ\chi on the electron-phonon interaction gives rise to a finite and negative isotope effect which could be experimentally detected in fullerides. In addition, we find an enhancement of the spin susceptibility with temperature increasing, in agreement with the temperature dependence of χ\chi observed in fullerene compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include
    corecore